Cubic fourfolds with an involution
نویسندگان
چکیده
There are three types of involutions on a cubic fourfold; two anti-symplectic type, and one symplectic. Here we show that cubics with exhibit the full range behaviour in relation to rationality conjectures. Namely, general fourfold symplectic involution has no associatedK3K3surface is conjecturely irrational. In contrast, particular an encoding="application/x-tex">K3, fact rational. We such contained intersection all non-empty Hassett divisors; call maximal. study algebraic transcendental lattices for both lattice theoretically geometrically.
منابع مشابه
Twisted Cubics on Cubic Fourfolds
We construct a new twenty-dimensional family of projective eight-dimensional holomorphically symplectic manifolds: the compactified moduli space M3(Y ) of twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be smooth and to admit a contraction M3(Y ) → Z(Y ) to a projective eight-dimensional symplectic manifold Z(Y ). The construction is based on results on lin...
متن کاملDerived Categories of Cubic Fourfolds
We discuss the structure of the derived category of coherent sheaves on cubic fourfolds of three types: Pfaffian cubics, cubics containing a plane and singular cubics, and discuss its relation to the rationality of these cubics.
متن کاملCubic Fourfolds and Spaces of Rational Curves
For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5 an odd integer, we show that the space Me parametrizing rational curves of degree e on X is non-uniruled. For e ≥ 6 an even integer, we prove that the generic fiber dimension of the maximally rationally connected fibration of Me is at most one, i.e. passing through a very general point of Me there is at most one rational curve. For e < 5...
متن کاملKodaira Dimension of Moduli of Special Cubic Fourfolds
A special cubic fourfold is a smooth hypersurface of degree three and dimension four that contains a surface not homologous to a complete intersection. Special cubic fourfolds give rise to a countable family of Noether-Lefschetz divisors Cd in the moduli space C of smooth cubic fourfolds. These divisors are irreducible 19-dimensional varieties birational to certain orthogonal modular varieties....
متن کاملThe Universal K3 Surface of Genus 14 via Cubic Fourfolds
Using Hassett’s isomorphism between the Noether-Lefschetz moduli space C26 of special cubic fourfolds X ⊂ P of discriminant 26 and the moduli space F14 of polarized K3 surfaces of genus 14, we use the family of 3-nodal scrolls of degree seven in X to show that the universal K3 surface over F14 is rational.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2022
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8811